An investigation of remotely-sensed soil depth in the optical region
نویسنده
چکیده
The remotely-sensed soil depth in the visible and near-infrared (near-IR) spectral region is investigated by using a numerical radiative transfer model of the coupled atmosphere and soil media. The sensible depth is determined by examining the downward hemispheric transmittance pro® le, hemispherical re ̄ ectance, and bidirectional re ̄ ectance with diVerent solar zenith angles at diVerent wavelengths. The particle size distributions and particle shapes are also evaluated. Under an ordinary condition, the sensible optical depth is about 3, which corresponds to geometric depth of 4± 5 times the particle eVective radius.
منابع مشابه
Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملCartography and Diachronic Study of the Naama sabkha (Southwestern Algeria) Remotely Sensed Vegetation Index and Soil Properties
The present study focuses on the past (1985) and current (2018) status of the Naama’s Sabkha, particularly its salinity, vegetation, and water status. The acquired results will be useful for the preservation of Sabkha biodiversity. The representative sampling allowed us to make 136 soil samples over two depths: topsoil (0-4 cm) and down soil (4-30 cm) layers. The salinity analyses revealed that...
متن کاملImproving Streamflow Prediction Using Remotely-Sensed Soil Moisture and Snow Depth
The monitoring of both cold and warm season hydrologic processes in headwater watersheds is critical for accurate water resource monitoring in many alpine regions. This work presents a new method that explores the simultaneous use of remotely sensed surface soil moisture (SM) and snow depth (SD) retrievals to improve hydrological modeling in such areas. In particular, remotely sensed SM and SD ...
متن کامل